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In the presence of Fe(II), O2, and reductant, activated bleomycin
(Act-BLM) transiently arises as the kinetically competent form
leading to DNA cleavage. Act-BLM and its final product, ferric
bleomycin (Fe(III)-BLM), are low-spin ferric complexes.1,2bAct-
BLM has gmax, ginter, gmin ) 2.26, 2.17, 1.94, and Fe(III)-BLM
hasgmax, ginter, gmin ) 2.45, 2.18, 1.89.2 Understanding bleomycin
action3 requires knowing the physical and electronic nature of
the BLM-oligonucleotide complexes. NMR-derived structures
were first determined from nonparamagnetic, nonactive Zn-
BLM4a,b and CO-Fe(II)-BLM forms.4c Next, NMR structures of
stable, nonparamagnetic HOO-Co(III)-BLM-oligonucleotide com-
plexes showed proximity of the hydrogen on the hydroperoxy
HOO- metal ligand to the sugar H4′.5 With iron-containing Act-
BLM, a spontaneous oxidative attack abstracts this H4′.6

Fe(III)-BLM and Act-BLM have not been crystallized, either
by themselves or as oligonucleotide complexes. Furthermore, these
Fe(III)-containing forms are not amenable to structural NMR
because the ferric ion is a strong relaxer and Act-BLM is un-
stable in solution. However, electron nuclear double resonance
(ENDOR) can reveal structural and electronic information on these
paramagnetic Fe(III) forms. ENDOR has resolved nearest-
neighbor hyperfine structure from nitrogen ligands, from axial
exchangeable H, and, for Act-BLM, from the bound hydro-

peroxide derived from17O2.7a ENDOR has demonstrated bleo-
mycin interaction with a DNA 10-mer duplex, d(GGAAGCT-
TCC)2, containing a 5′-G-pyr-3′ sequence favored for DNA
cleavage.7b DNA 31P-to-Fe(III) dipolar couplings indicated an
Fe(III)-to-31P phosphate (unassigned7b) distance of 7.4 Å.8

Our aim is now to measure the distance and orientation from
Fe(III) in both Act-BLM and Fe(III)-BLM to the target cytidine
sugar in the 5′-G-C-3′ sequence. To pinpoint this cytidine, this
sugar was labeled with ENDOR-detectable19F replacing H2′′ at
its 2′ carbon; thus, the oligonucleotide d(GGAAGCFTTCC)2 was
used, where CF is 2′F-cytidine.9 Samples of Fe(III)-BLM and Act-
BLM in deuterated solvent and in a slight molar excesses of
(GGAAGCFTTCC)2 were prepared as described previously for
d(GGAAGCTTCC)27b (see Supporting Information). Samples
(∼50 µL) contained 0.6 mM Act-BLM or 1.4 mM Fe(III)-BLM.
The respectiveg-values of Fe(III)-BLM and Act-BLM were
unchanged by these oligonucleotides. The Q-band spectrometer10

and conditions7b were as previously described.
The hyperfine-coupled spin1/2 nucleus of19F has first-order

ENDOR frequencies,19νENDOR ) |19νNMR ( A/2|, where19νNMR

is the19F NMR frequency (48.06 MHz at 1.200 T) andA is the
hyperfine coupling. Figure 1 shows19F ENDOR spectra centered
at 19νNMR for the d(GGAAGCFTTCC)2 complexes with Act-BLM
(spectra A-C) or Fe(III)-BLM (spectra D-F) near their respective
gmax, ginter, andgmin. 19F provided distinctly anisotropic ENDOR
splittings. For Act-BLM and Fe(III)-BLM, respectively, the
hyperfine splittings, measured as splittings between maxima of
the ENDOR spectra, were as follows: atgmax, 0.45( 0.01 and
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Figure 1. 19F ENDOR spectra centered at the appropriate19νNMR were
obtained under adiabatic rapid passage conditions with small (∼0.12 G)
100 kHz field modulation,∼0.25 µW microwave power, and∼20 W
radio frequency power, in a sweep time of 5 s. Each spectrum for Act-
BLM was compiled in∼30 min, and each Fe(III)-BLM spectrum was
collected in∼1 h. Spectra A-C from Act-BLM were (A) atg ) 2.26,
H ) 1.08 T; (B) atg ) 2.17,H ) 1.12 T; (C) atg ) 1.94,H ) 1.26 T.
Spectra D-F from Fe(III)-BLM were (D) atg ) 2.43,H ) 1.00 T; (E)
at g ) 2.18,H ) 1.12 T; (F) atg ) 1.89,H ) 1.29 T.
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0.51 ( 0.02 MHz; atginter, 0.21( 0.01 MHz and 0.23( 0.01
MHz; at gmin, 0.16( 0.03 and 0.16( 0.03 MHz. There was also
a smaller19F splitting of about 0.13( 0.02 MHz observed only
neargmax. Figure 2 shows the systematic shift of19F ENDOR
frequencies of Act-BLM features as theg-value varied fromgmax

to gmin. The experimentally most distinct ENDOR features were
the outlying features, with frequencies readily computable by
angle-selected ENDOR theory11 (dashed lines, Figure 2). The
input parameters for angle-selected computations that predict
outlying features were the principal elements of the hyperfine
tensor and the angle(s) describing the relative orientation of the
g tensor and hyperfine tensor.12 A comparison of experimental
and simulated angle-selected spectra for Act-BLM is shown in
the Supporting Information, Figure 1S. A good fit to the overall
compendia of angle-selected19F ENDOR features from the Act-
BLM (GGAAGCFTTCC)2 complex was provided by a19F

hyperfine tensor with componentsAz, Ay, Ax ) 0.48( 0.01,-0.23
( 0.01, -0.20 ( 0.03 MHz, where the principal hyperfine (z)
axis defined by the Fe(III)-19F vector (R) made an angle of 10°
in thegmax-gmin plane with respect to thegmax axis. This hyperfine
tensor was well explained by dipolar coupling, and the predicted
distance from19F of 2′F-cytidine to Fe(III) of Act-BLM was 7.0
( 0.2 Å. Angle-selected ENDOR (Supporting Information, Figure
2S) also predicted for Fe(III)-BLM a similar 6.8( 0.2 Å distance
and collinearity ofR with gmax. In principle, covalency may alter
electron spin density on the iron and alter the estimate ofR;
however, if the theoretical estimate of 95% spin on the iron13 is
appropriate, the covalent correction toR would be small
(∼ -0.1 Å). The 31P couplings observed for complexes of
d(GGAAGCFTTCC)2 were the same as those previously measured
for d(GGAAGCTTCC)2.7b Although it was not possible to observe
angle-selected ENDOR of the smaller, 0.13 MHz splitting except
near gmax, such a19F coupling was expected (see Supporting
Information) from the more distant 2′F-cytidine on the comple-
mentary oligonucleotide strand.

Our Fe-2′F distances may be compared to analogous distances
from plausibly relevant NMR-derived Co-BLM-oligonucleotide
structures. For a HOO-Co(III)-BLM complex with a 12 base-
pair, covalently linked, gapped duplex, the Co-H2′′ distance was
8.0 Å;5g with 6-mer5e or 10-mer5a duplexes it was 6.1 Å. Our
directly determined Fe(III)-2′F distance was 6.8-7.0 Å. These
NMR structures support our assigning the 7.4 Å Fe(III)-31P
distance7b to the dC6 3′-phosphate in d(GGAAGCTTC)2. This dC6-
3′ phosphate is adjacent to the 2′F of the present ENDOR study.
The 2′F-Fe-3′P angle of 27( 5° calculated by combining the
31P hyperfine tensor7b with our present19F tensor (from either
Act-BLM or Fe(III)-BLM complexes) lies within the 17-29°
range for the analogous H2′′-Co-3′P angles of the NMR
structures.5a,e,gOur 19F dipolar tensor indicates that the Fe-2′F
direction nearly coincides withgmax. Combining this directional
information with the assumption that the Fe and 2′F coordinates
approximate those of Co and H2′′ coordinates in the Co-BLM-
oligonucleotide NMR structure5g implies that thegmax axis tilts
at about 35° to the Fe-proximal-O vector, rather than being
collinear with it. (See Supporting Information for the schematic
showingg-tensor, Fe,31P,19F, and HOO- geometry.) In summary,
the dipolar hyperfine coupling determined between the cytidine-
2′19F and the Fe of Act-BLM or of Fe(III)-BLM provides a
definitive constraint on the distance between the BLM Fe and
the 2′ substituent of the cytidine sugar where H4′ abstraction
occurs.
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Figure 2. The g value dependence of19F ENDOR features from Act-
BLM with d(GGAAGCFTTCC)2. The experimental conditions were as
for Figure 1. The dashed lines show the values predicted for outlying
splittings modeled from an anisotropic hyperfine tensor havingAz, Ay,
Ax ) 0.48,-0.23,-0.20 MHz and the Fe(III)-19F vector (R) pointing
at 10° to thegmax axis in thegmax-gmin plane. The signal-to-noise was
approximately 2-fold better in thegmax-ginter region, where the underlying
EPR signal is larger. In theginter-gmin region there were no19F splittings
greater than 0.5 MHz.
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